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I. INTRODUCTION

Cells are in everything all around us. Individual cell sizes of
plant species have a direct impact on numerous things in the
plant. Different sizes impact how fast water can reach leaves
through the vessels, the density of cell walls, and also the
cells thickness to breadth ratio which determines its implosion
resistance. Being able to better understand these different
qualities of plant cells opens up a whole new world of research.
Plant cell research has Developing a further comprehension
of the plant cell world allows us to discover new unique
qualities of plants that have yet to be discovered. The three
primary cell types examined in this study are ray parenchyma,
vessels, and fibers. The parenchyma provide sugar and water
storage as well as serve to transport water short distances. In
the dataset, the parenchyma appear as dark lines stretching
across the image lying in between the bright yellow fibers.
The vessels act as long distance water transporters and also
provide mechanical support as a secondary function. In the
dataset, the vessels appear as round gray colored circles
located in various places throughout the image. The fibers,
located around the parenchyma and vessels, simply act as
mechanical support. In the dataset, the fibers appear as small
bright yellow circles that take up a majority of the image that
they are in. Analyzing these three different cell types allows
us to better understand the plants that are being examined and
how water is transported through each of these. Along with
this, we are also able to learn more about the physiology and
ecology of the individual plant species whose anatomy that
we examine. This analysis is commonly done by hand which
takes hours of work to accurately label and measure each plant
cell within an image. It is an arduous process that requires a
significant amount of time and concentration.

Automation of this process creates an opportunity to save
an immense amount of time and labor. With this decrease
in time spent manually classifying, more effort could be
spent analyzing these different plant species and the properties
unique to each one. Developing or discovering a method of
automating this process would very well open the doors to new
and exciting research within the respective field. Automation
has been attempted before but with varying results. [1] Another
research study shows that classification was possible using a
Support Vector Machine as well as a Random Forest when
looking at laser scanning confocal images. [2] One study
used linear discriminant analysis in order to classify different
cell types for their data. [3] These studies show that the
automated classification of cells is something worth doing as
the researchers doing so also see the opportunity in automating
this difficult process. Lots of people want to investigate this
as the days of manually measuring and classifying are quickly
being realized to be inefficient and tedious.

The goal of this paper is to determine if automatic analysis
of different plant cell types can be done using various scikit-
learn classifiers as well as a pre-trained ResNet model. Upon
discovering which of these works best, we all will have a
better idea of what method to use going forward so that the
automatic classification of plant cell types can be used easily
in the future of plant cell research.

II. METHODS

A. Dataset

The image dataset used was provided privately by Dr. Helen
Holmlund and Dr. Anna Jacobsen. There are 488 images in
total with the dimensions 1600x1200. 74 images are from
three different Ceanothus crassifolius (CCR) roots with root 1
having 26 images, root 2 having 24 images, and root 3 having
23 images. 82 images are from three different CCR stems
with stem 1 having 24 images, stem 2 having 36 images,
and stem 3 having 22 images. 86 images are from three
different Ceanothus oliganthus (CO) roots with root 1 having
32 images, root 2 having 24 images, and root 3 having 30
images. 74 images are from three different CO stems with
stem 1 having 23 images, stem 2 having 24 images, and stem 3
having 27 images. 87 images are from three different Rhamnus
californica (RCA) roots with root 1 having 25 images, root 2
having 32 images, and root 3 having 30 images. 85 images
are from three different RCA stems with stem 1 having 37
images, stem 2 having 23 images, and stem 3 having 25
images. All the images were stained for starch so that it would
be possible to see the dark circles. For the classification, I used
the open platform labelflow.ai to label each cell type (Fiber
wall, Parenchyma wall, Vessel wall) by creating a bounding
box for each label. A sample of the images provided in the
dataset can be seen in Figure 1.

B. Evaluation Metric

The evaluation metric used is scikit-learn’s accuracy score.
The equation for this evaluation metric is as follows:

accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi) (1)

For this equation, ŷi is the predicted value of the i-th
sample and yi is the ground truth of the same i-th sample.
We evaluated our machine learning model with this metric
to see how our model’s prediction does with matching to the
actual label. This also uses 1(x) as the indicator function. [4]



C. Preprocessing

In order to make the data valid to input into the machine
learning model so that it may work, I cropped the images
so that each data point would be one individual cell type.
By creating a bounding box for each cell type, labelflow.ai
also allowed me to export labeled images into csv files which
included the coordinates of the bounding boxes. With the
coordinates of the bounding boxes, I used the Python Imaging
Library (PIL) module to open and transform the images so that
the images could be properly cropped. Then the images were
augmented and normalized for training and just normalized
for validation. To augment images to create more data for our
dataset, ImageDataGenerator from Keras preprocessing was
used. The parameters provided to the ImageDataGenerator are
as follows: rotation range = 40, width shift range = .2, height
shift range = .2, shear range = .2, zoom range = .2, horizontal
flip = True, and fill mode = nearest. These parameters created
images that were different enough from the initial image to
properly challenge the models that were given this data. This
augmentation allowed me to train the models with much more
data and allowed me to create data that would be more difficult
for the model to learn yet produce a better outcome. An
example of a few augmented images can be seen below in
Figure 2.

D. Types of Models

The types of models used in this analysis are primar-
ily scikit-learn models as well as the pre-trained ResNet-
18 model. The scikit-learn models used are: KNeighbors
Classifier, Ridge Classifier, Support Vector Machine (SVM),
Multi-layer Perceptron (MLP), Stochastic Gradient Descent
Classifier (SGD).

III. RESULTS

The KNeighbors Classifier achieved an accuracy score of
.5891. The Ridge Classifier achieved an accuracy score of
.4562. The SVM achieved an accuracy score of .6098. The
MLP achieved an accuracy score of .5891. The SGD achieved
an accuracy score of .5106. Each of the runt times for the
models from scikit-learn were negligible as the runs were
completed instantaneously upon running the code. The pre-
trained ResNet-18 model achieved an accuracy score of .9071.
The runtime of the ResNet-18 model had a runtime of 47
minutes and 1 second.

IV. DISCUSSION

The pre-trained ResNet-18 model greatly surpassed the
scores of the scikit-learn models as it achieved the highest
accuracy score. The best scikit-learn model was the Support
Vector Machine. The second best scikit-learn model was the
KNeighbors Classifier. The third best scikit-learn model was
the Multi-layer Perceptron. The fourth best scikit-learn model
was the Stochastic Gradient Descent Classifier. The worst
performing model was the Ridge Classifier. The reason why
ResNet-18 severely outperforms these other models is likely
due to ResNet-18 being pre-trained on over a million images

while the scikit-learn models are not pre-trained. The varying
scores among the scikit-learn models likely is just because of
the differences in each classifier. This would explain why the
Ridge Classifier performed so poorly while the Support Vector
Machine was able to perform considerably better.

V. CONCLUSION

The results of these models are quite promising for the
future of being able to automatically detect and measure
different plant cell types. The results from ResNet-18 showed
that models pre-trained on millions of images should be used
in future studies to accurately predict the cells. The only
downside to using pre-trained models is the considerable
increase in runtime. With the success of this automation
process, it is possible for people to work on further projects
that would help to reduce significant amount of time and labor
for other types of labor; such as calculating the distance of
the walls for each cell type, and annotating each cell type
within the image. Researching further into automatic methods
of measurement within cells would certainly be a massive
step in being able to better understand changes in plant cells.
Something I could have examined more is other pre-trained
models such as other variations of ResNet. These other models
may have lower run times as well as better accuracy scores
compared to the ResNet-18 network. It would be interesting to
attempt to use other networks such as EfficientNet or DenseNet
to see what their times and accuracy scores would be. These
models have varying numbers of trainable parameters so each
would definitely produce noticeable changes. A greater dataset
size may also produce better results for both the pre-trained
and scikit-learn models. A Random Forest classifier from
scikit-learn would also be worth looking at as it appeared to
perform better than the Support Vector Machine in another
study.[2] Along with a greater dataset, I could have augmented
more images in order to possibly further improve each of
the models’ results. I may also could have taken different
approaches to preprocessing in order to create better results
by augmenting the data in different ways.
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